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A linear stability analysis is made of a family of natural convection flows in an
arbitrarily inclined rectangular enclosure. The flow is driven by prescribed heat
or mass fluxes along two opposing walls. The analysis allows for perturbations
in arbitrary directions; however, the purely longitudinal or transverse modes are
numerically found to be the most unstable. For the numerical treatment, a finite
difference method with automatically calculated differencing molecules, variable order
of accuracy, and accurate boundary treatment is developed. In cases with boundary
layers, a special scaling is applied.

For base solutions with natural (bottom heavy) stratification, critical conditions are
solved for as a function of the Rayleigh number, Ra, and the angle of inclination to
the bottom-heated case, α, for different Prandtl numbers (Pr), with complete results
for Pr = 0.025, 0.1, 0.7, 7, 1000, and Pr →∞. The uniform flux case is found to be
much more stable than that of Hart (1971) with fixed wall temperatures, a fact which
is attributed to the much larger stratification which occurs in the base solution. As
could be expected, instabilities tend to be favoured by a decrease in Pr, an increase
in Ra, and a decrease in α; however, exceptions to all these rules could be found.

Cases in which the wavenumber is zero, or approaches zero in different ways, are
studied analytically. Integral conditions, derived from the unresolved end regions, are
applied in the analysis. The results show that all the base solutions with unnatural
(top heavy) stratification are unstable to large-wavelength stationary rolls whose axes
are parallel with the base flow.

Real-valued perturbations are constructed and visualized for some of the modes
considered.

1. Introduction
Stability analysis is concerned with investigating under what conditions given

solutions to nonlinear differential equations are stable in time. From the pioneering
work of Lord Rayleigh (1916), and up to the present, fluid flows have been a
major object of study. Three very useful textbooks on stability in fluid flows are
Chandrasekhar (1961), Joseph (1976) and Drazin & Reid (1981). The last one contains
both a very readable overview of the field and a detailed literature review. In the
following, we present a small selection of work on stability of natural convection in
enclosures, with the intention to put the present work into context.

For the Rayleigh–Bénard case of a bottom-heated horizontal enclosure, Pellew
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directed to M. Vynnycky.
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& Southwell (1940) made a structured presentation of the basic problem and gave
an accurate solution for the bifurcation from a conductive solution to one with
convection in the form of stationary rolls. This first bifurcation occurs at Rayleigh
numbers, based on the wall-to-wall distance and temperature difference, of 1708 for
the uniform temperature case and 720 for the uniform flux case (Sparrow, Goldstein &
Jonsson 1963). Finite box sizes have a stabilizing effect, as shown by Davis (1967). For
subsequent bifurcations, the criticality conditions also depend on the Prandtl number.
The review by Busse (1978) reports extensive stability results. There, the wavelength
of the base-flow rolls was varied as an independent parameter. Five different modes
were found to define the stability boundary in the (Ra, Pr, wavenumber)-space.
Experiments, in which active control of the wavenumber was exercised, have provided
some verification. Koschmieder (1993, chaps. 6 and 7) considers the wavenumber to be
a unique function of Ra and Pr, and criticizes the works summarized in Busse (1978)
for varying the wavelength too freely. However, unless the stability boundaries from
Busse (1978) should actually be incorrect, the amendments indicated by Koschmieder
merely amount to picking out a subset of those results – which would still be an
important addition, if valid.

The stability for a side-heated vertical enclosure was investigated by Birikh et al.
(1969), who prescribed the wall temperatures T1 +Sx and T2 +Sx (x being the vertical
coordinate), and solved for Pr = 0.2, 1, and 5. The stratification constant S was varied
as a free parameter, but was kept fairly small in the study. For cases with weak natural
stratifications, monotonic instabilities were found to be dominant (we believe that
the more common term ‘stationary instability’ may sound like a contradiction for
people outside the field). Boundary layers arise for larger stratifications, and were
treated by Gill & Davey (1969), who solved in the boundary-layer approximation
only, but for a wider range of Prandtl numbers. Travelling-wave instabilities were
found in all their cases. Bergholz (1978) verified the travelling-wave instabilities from
Gill & Davey (1969), but also found monotonic instabilities to be effective in two
parameter regions: for Pr < 12.7 and weak stratification, in agreement with Birikh
et al. (1969), and for Pr > 50 and stronger stratification. The latter modes had not
been investigated in previous theoretical work, but were found to agree well with
experiments by Elder (1965) and Vest & Arpaci (1969).

An arbitrarily inclined enclosure with side walls of uniform temperatures and a
naturally occurring stratification was treated by Hart (1971), both theoretically, for
Pr = 0.71 and Pr = 6.7, and experimentally, for Pr = 6.7 (water). For the vertical
case, Hart observed travelling waves only, which was explained by the fact that the
stratification which occurs naturally at steady-state is, even for the case of uniform
wall temperatures, too large for the low-Pr stationary instabilities found by Birikh et
al. (1969) to occur. We shall later return to the work of Hart (1971) for comparison
with our own findings.

The present work concerns the case in which the heat (or mass) flux, rather than
the temperature (or concentration), is prescribed on the walls. Our interest in the case
arose from electrochemical cells, where the desirable property of a uniform current
distribution leads to a condition of uniform ionic flux. An exact base solution for
the case was recently found by Sundström & Kimura (1996, hereafter referred to as
SK), who combined a generalized version of the solutions given by Hart (1971) with
a strict control volume method for determining the stratification from the end-region
boundary conditions, the latter originating from a physical argument in Bejan (1979).
Near the Bénard limit, multiple solutions were found to exist; one branch has a
natural stratification, and is accompanied by a varying number of branches with
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Figure 1. Geometry and coordinate system.

unnatural stratification. It is shown in Appendix A that the unnatural solutions are
always unstable; consequently, most of the present work is devoted to investigating
the stability of the natural solutions. For those, we attempt to treat perturbations
of arbitrary nature for continuously varying inclination angles, and to do this for
sufficiently many values of Pr so that the general behaviour of the stability boundaries
of the different modes is made clear.

2. Non-dimensional variables and equations
With the geometry given by figure 1, the following non-dimensional variables are

defined:

t =
t∗k
ρcph2

, x =
x∗

h
, y =

y∗

h
, z =

z∗

h
, (2.1a–d)

θ =
T − T0

ΛTh
, u =

νu∗

βTΛTh3g
, p =

p∗

βTΛTρh2g
, (2.1e–g)

Ra =
βTΛTh

4gρcp

νk
, P r =

νρcp

k
, A =

H

h
, Az =

Hz

h
, λ1 =

Λ1T

ΛT
, λ2 =

Λ2T

ΛT
,

(2.1h–m)

where ΛT =
√
Λ2

1T + Λ2
2T , Λ1T = −q

′′(y = −1)

k
, Λ2T = −q

′′(y = 1)

k
. (2.1 n–p)

T0 is the average initial temperature, q′′ the heat flux, βT the coefficient of thermal
expansion, k the heat conductivity, cp the specific heat capacity, ν the kinematic
viscosity, ρ the fluid density, and g the gravitational acceleration. The scaling is such
that the dimensionless fluxes λ1 and λ2 are restricted to lie on the curve λ2

1 + λ2
2 = 1,

so that one can write

λ1 = cos γ, λ2 = sin γ, (2.2a, b)

where γ is the angle in the (λ1, λ2)-plane. These are the same definitions as in SK, with
the addition of a third coordinate direction, z, and a box width in that direction, Hz .
The corresponding definitions for an equivalent mass transfer case can be found in
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that work. The governing equations are

1

Pr

(
∂u

∂t
+ Ra (u · ∇)u

)
= −∇p+ ∇2u+ θ cos αex + θ sin αey, (2.3)

∇ · u = 0, (2.4)

∂θ

∂t
+ Rau · ∇θ = ∇2θ, (2.5)

with the boundary conditions that u = 0 on all the boundaries, and that

∂θ

∂y

∣∣∣∣
y=−1

= λ1,
∂θ

∂y

∣∣∣∣
y=1

= λ2,
∂θ

∂x

∣∣∣∣
x=±A

= 0,
∂θ

∂z

∣∣∣∣
z=±Az

= 0. (2.6a–d)

However, the full problem will not be treated. Instead of applying the boundary
conditions on the endwalls in the x- and z-directions, we solve for a region which
does not extend all the way to those walls. This must be done with some caution:
if the x and z walls are far away, we would not expect the details of what goes on
there to matter for the interior. However, no matter how far away the walls are, one
must take care not to violate global conservation of mass and energy. Rather than
to ensure this by actually solving the end regions as well and matching the solutions
to the interior, we shall employ a different method, following SK, which makes use
of control volumes whose bounding surfaces are partly attached to the boundaries
where the original boundary conditions are given, and partly cut through the region
solved for. The method is particularly simple to apply for cases in which the fluxes
are prescribed.

With a control volume which has y ∈ [−1, 1], x ∈ [−A, x0], and z ∈ [−Az, z0], where
x0 and z0 are arbitrary, one obtains, using the boundary conditions on the x and z
walls, the following integral conditions:∫ z0

−Az

∫ 1

−1

u(x0, y, z) dy dz +

∫ x0

−A

∫ 1

−1

w(x, y, z0) dy dx = 0, (2.7)

∫ x0

−A

∫ z0

−Az

∫ 1

−1

∂θ

∂t
dy dz dx +

∫ z0

−Az

∫ 1

−1

(
Rauθ − ∂θ

∂x

)
x=x0

dy dz

+

∫ x0

−A

∫ 1

−1

(
Rawθ − ∂θ

∂z

)
z=z0

dy dx = (λ2 − λ1)(z0 + Az)(x0 + A). (2.8)

3. Base solution
The base solution whose stability we will investigate applies for large times far

from the endwalls in the x- and z-directions, and is of the following form:

u = U(y;Ra, γ, α, S ) ex, (3.1)

θ = Θ(x, y, t;Ra, γ, α, S ) = f(y;Ra, γ, α, S ) +
λ2 − λ1

2
t+ Sξ, (3.2)

p = P (x, y, t;Ra, γ, α, S ) = P0 + Gx+ ξ
λ2 − λ1

2
t+ 1

2
Sξ2, (3.3)

where ξ = x cos α+ y sin α is a coordinate in the direction opposite to that of gravity,
and the functions U and f are as given in SK (pp. 349–352). For non-equal fluxes,
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the solution can only be valid for intermediate times, as the linear growth term will
eventually cause the underlying assumptions (constant properties etc.) to break down.
For some purposes, it is convenient to write

Θ(x, y, t) = g(y) +
λ2 − λ1

2
t+ Sxx; (3.4)

this rewriting is in fact necessary for the horizontal case. The integral conditions (2.7)
and (2.8) determine the constants G (reduced pressure gradient), and S (stratification)
with a relative error O(δz/Az), where δz is a characteristic size of the regions near the
z walls where the interior solution is not valid. It turns out that G can be expressed
in terms of S , and the latter be found from a transcendental equation of the form

F(S, Ra, γ, α) = 0. (3.5)

The Prandtl number, Pr, does not enter the base solution, because the flow is uni-
directional. However, it should be borne in mind that the growth of the thermal and
viscous boundary layers begins in the turning regions and that their growth rates are
certainly different in high and low Prandtl number fluids, regardless of whether the
temperature or heat flux is specified at the walls; this fact, however, does not affect
the analysis presented herein. The aspect ratios A and Az do not enter either as long
as they are much larger than the boundary-layer thickness, which is guaranteed a
priori if A,Az � 1. The parameters which determine the base solution are thus Ra, γ,
and α. However, in the stability analysis, the Prandtl number, Pr, will also enter, as
well as two different wavenumbers. Because of the large number of parameters, we
have only made calculations for the case of equal fluxes, γ = 45◦. S(Ra, α, γ = 45◦) is
plotted in figure 2. Solutions with positive S have a natural stratification (heavier at
the bottom), whereas S < 0 means that the stratification is unnatural.

Before we go on to derive perturbation equations, some further characteristics
of the base solution are perhaps worth mentioning. For high Rayleigh numbers
and natural stratification, the cross-sectional profiles U(y) and f(y) have boundary
layers which both have a typical thickness of β−1 = (RaS cos2 α/4)−1/4. For vertical
orientation, cos α = 0, and S ≈ 0.463Ra−1/9, which gives β−1 ∝ Ra−2/9. The fact that
the velocity and temperature boundary layers are of equal thickness, irrespective of
Pr, is in sharp contrast to the free convection occurring at a heated, vertical, plate
with no stratification in the surrounding fluid, where two different Pr-dependent
boundary-layer structures occur, depending on whether Pr � 1 or Pr � 1 (Bejan
1984, chapter 2; Leal 1992, chapter 11).

4. Perturbation equations
4.1. Derivation

Let

u = {U(y) + û} ex + v̂ ey + ŵ ez, (4.1)

p = P (x, y, t) + p̂, (4.2)

θ = Θ(x, y, t) + θ̂, (4.3)

where all the perturbations (marked with hats) are functions of x, y, z, and t,
which have small enough amplitudes so that the following linearized equations are
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Figure 2. Stratification in the base solution for γ = 45◦, from Sundström & Kimura (1996).

approximately valid:

1

Pr

(
∂û

∂t
+ RaU

∂û

∂x
+ Rav̂

∂U

∂y

)
+
∂p̂

∂x
− ∇2û− θ̂ cos α = 0, (4.4)

1

Pr

(
∂v̂

∂t
+ RaU

∂v̂

∂x

)
+
∂p̂

∂y
− ∇2v̂ − θ̂ sin α = 0, (4.5)

1

Pr

(
∂ŵ

∂t
+ RaU

∂ŵ

∂x

)
+
∂p̂

∂z
− ∇2ŵ = 0, (4.6)

∂û

∂x
+
∂v̂

∂y
+
∂ŵ

∂z
= 0, (4.7)

∂θ̂

∂t
+ RaU

∂θ̂

∂x
+ Raû

∂Θ

∂x
+ Rav̂

∂Θ

∂y
− ∇2θ̂ = 0. (4.8)

On the walls at y = ±1, the boundary conditions are

∂θ̂

∂y
= û = v̂ = ŵ = 0. (4.9a–d)
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The importance of the linearized integral conditions is far from obvious at this point,
but let us write them down to facilitate later discussion:∫ z0

−Az

∫ 1

−1

û(x0, y, z) dy dz +

∫ x0

−A

∫ 1

−1

ŵ(x, y, z0) dy dx = 0, (4.10)

∫ x0

−A

∫ z0

−Az

∫ 1

−1

∂θ̂

∂t
dy dz dx +

∫ z0

−Az

∫ 1

−1

(
RaûΘ + RaUθ̂ − ∂θ̂

∂x

)
x=x0

dy dz

+

∫ x0

−A

∫ 1

−1

(
RaŵΘ − ∂θ̂

∂z

)
z=z0

dy dx = 0. (4.11)

The coefficients in (4.4)–(4.9) do not depend on x, z, or t. It is therefore possible to
find elementary solutions of the form

φ̂ = φ̃(y) exp (σt+ ikx+ imz), (4.12)

where φ stands for any of the variables u, v, w, p, or θ. The perturbations thus obtained
are complex-valued. Rather than directly taking the real part, as is frequently done,
let us for the moment be content with having complex solutions, defined in the
whole (k, m)-plane, and return later to the task of combining those to obtain real-
valued quantities. The applicability of the integral conditions (4.10) and (4.11) is
another question that we shall return to later. The ansatz (4.12) leads to the following
eigensystem:

Pr−1(σ + RaUik)ũ+ Pr−1RaṽU ′ − ũ′′ + (k2 + m2)ũ+ ikp̃− θ̃ cos α = 0, (4.13)

Pr−1(σ + RaUik)ṽ − ṽ′′ + (k2 + m2)ṽ + p̃′ − θ̃ sin α = 0, (4.14)

Pr−1(σ + RaUik)w̃ − w̃′′ + (k2 + m2)w̃ + imp̃ = 0, (4.15)

ikũ+ imw̃ + ṽ′ = 0, (4.16)

(σ + RaUik)θ̃ − θ̃′′ + (k2 + m2)θ̃ + RaũSx + Raṽg′ = 0, (4.17)

with the boundary conditions

ũ(±1) = ṽ(±1) = w̃(±1) = θ̃′(±1) = 0. (4.18a–d)

In the numerical treatment we have used, it pays to reduce the number of variables
at the cost of increasing the order of the system. Thus, we proceed by eliminating the
pressure between equations (4.13) and (4.15). In doing so, the quantity

ω̃y = i (mũ− kw̃) , (4.19)

which is the amplitude function for the vorticity in the y-direction, naturally appears.
The definition (4.19) together with the continuity equation (4.16) makes it possible to
express both ũ and w̃ in terms of ω̃y and ṽ:

ũ = i

(
kṽ′ − mω̃y

k2 + m2

)
, w̃ = i

(
mṽ′ + kω̃y

k2 + m2

)
, (4.20a, b)

which is valid whenever at least one of the wavenumbers is non-zero. The case
k = m = 0 is treated in Appendix A. The remaining pressure term p̃′, appearing in
equation (4.14), is eliminated by multiplying that equation with k2 +m2 and adding the
derivative of the linear combination ik(4.13) + im(4.15). The perturbation equations



52 L.-G. Sundström and M. Vynnycky

can then be written

σ

Pr
{qṽ − ṽ′′} = −ṽ′′′′ +

(
2q +

Raik

Pr
U

)
ṽ′′ − Raik

Pr
U ′′ṽ − q

(
q +

Raik

Pr
U

)
ṽ

+ik cos α θ̃′ + q sin α θ̃ (4.21)

σ

Pr
ω̃y = ω̃′′y −

(
q +

Raik

Pr
U

)
ω̃y − Raim

Pr
U ′ṽ + im cos α θ̃ (4.22)

σθ̃ = θ̃′′ − (q + RaikU) θ̃ − Raik

q
Sxṽ

′ − Rag′ṽ +
Raim

q
Sxω̃y, (4.23)

where q = k2 + m2. With the introduction of ω̃y , the boundary conditions have
transformed to

ṽ(±1) = ṽ′(±1) = ω̃y(±1) = θ̃′(±1) = 0. (4.24a–d)

4.2. Some mathematical aspects

For the case m = 0, (4.22) decouples from (4.21) and (4.23). This means that there are
two different eigenvalue spectra: one from (4.21) and (4.23), which gives all solutions
with (ṽ, θ̃) 6= 0, the other from (4.22), which gives all solutions with ω̃y 6= 0. However,
on multiplying (4.22) by the complex conjugate ω̃∗y , integrating from y = −1 to y = 1,
and taking the real part of that integral, one obtains

Re{σ}
Pr

∫ 1

−1

|ω̃y|2 dy = −
∫ 1

−1

(|ω̃′y|2 + k2|ω̃y|2)dy (4.25)

which, since both the integrals are positive whenever ω̃y 6≡ 0, shows that all such
modes will have Re{σ} < 0, and thus be decaying. This means that (4.22) need not
be considered when m = 0. For the different special case k = 0, the system remains
fully coupled.

For the case of equal fluxes, U and g are odd in y. One can then show that if
[σ, θ̃(y), ṽ(y), ω̃y(y)] is a solution, then so is [σ∗, θ̃∗(−y), ṽ∗(−y),−ω̃∗y(−y)]. Since any
complex roots occur in conjugate pairs, the characteristic equation can be written in
real form, which indicates that one may be able to find an equivalent eigensystem
with real coefficients. However, we chose instead to solve the complex system directly.

Since the eigenvalue problem under consideration is not self-adjoint, one may raise
the question as to whether or not the eigenfunctions φ̃(y) form a complete basis which
spans the space of allowed (sufficiently regular) initial conditions. DiPrima & Habetler
(1969) have shown a completeness theorem for a class of generalized eigenvalue
problems which includes both the two-dimensional Orr–Sommerfeld equation, and a
Bénard type problem with bottom heating. It would therefore not be surprising if a
complete basis is obtained in the present case as well. However, we are not aware
of any proof of this, and must therefore be content to restrict the study to initial
conditions that are spanned by the eigenfunctions which are obtained from the ansatz
that we have made.

4.3. Construction of real-valued solutions

Although any, or both, of the two wavenumbers may be negative, a closer inspection of
the system (4.21)–(4.23) reveals some symmetries, which makes it possible to construct
solutions for the whole (k, m)-plane from solutions found in the first quadrant (positive
k and m). These symmetries are given in table 1; note specifically that the real part
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−k k

m σ∗, θ̃∗, ṽ∗,−ω̃∗y σ, θ̃, ṽ, ω̃y

solved

−m σ∗, θ̃∗, ṽ∗, ω̃∗y σ, θ̃, ṽ,−ω̃y

Table 1. The effect of sign shifts in k and m (* denotes the complex conjugate).

of σ, which gives the growth rate, is independent of the sign of the wavenumbers.
From (4.20a, b), ũ is seen to have the same symmetries as ṽ, whereas w̃ has the same
symmetries as ω̃y .

From the nature of the base flow, we expect waves to be standing in z, but travelling
in x. Indeed, table 1 does admit such solutions. (It also admits travelling waves in z,
but not standing waves in x.) Adding solutions from all the four quadrants together
with equal weights, one obtains the real-valued perturbations

θ̂ = Re{θ̃(y) exp(σt+ ikx)} cosmz, (4.26a)

û = Re {ũ(y) exp(σt+ ikx)} cosmz, (4.26b)

v̂ = Re {ṽ(y) exp(σt+ ikx)} cosmz, (4.26c)

ŵ = Re {iw̃(y) exp(σt+ ikx)} sinmz. (4.26d)

Note that (4.26) cannot be obtained by just combining real and/or imaginary parts
directly in the ansatz (4.12), since such manipulations only make use of one of the
two diagonals in table 1. We have chosen the construction (4.26) for the visualizations
presented in figures 6–8. However, other linear combinations are also possible – the
analysis made here does not give a definite answer to how the different elementary
solutions will combine.

4.4. Integral conditions

Knowing that there are regions near the x and z walls (say of sizes ∆x and ∆z) where
(4.26) is not valid, one is led to ask to what extent the integral conditions (4.10) and
(4.11) are applicable. It seems that they can give useful information only if a typical
value of the integral in question, I , is much larger than the estimated error due to the
end regions, ∆I . Assuming the amplitude of the integrand to be φmax, one has

I ∼ φmax min(x0 + A, k−1) min(z0 + Az, m
−1). (4.27)

Estimating the error due to the end regions to be

∆I ∼ φmax{∆x min(z0 + Az, m
−1) + ∆z min(x0 + A, k−1)}, (4.28)

the condition for applicability, ∆I/I � 1, can be written

∆x/min(x0 + A, k−1) + ∆z/min(z0 + Az, m
−1)� 1. (4.29)

For the case k = m = 0, (4.29) indicates that the integral conditions should be applied.
The case is treated in Appendix A, with a slightly generalized ansatz.

With k = 0, m 6= 0 (and Az � m−1) the integral conditions apply only if m∆z � 1.
Typically, however, we expect m∆z ∼ m∆y ∼ mmin(1, β−1) ∼ 1, so that the integral
conditions do not apply. Even for the cases treated in Appendices A and B, where
we have found instabilities in the limit as m → 0, it appears inappropriate to apply
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the integral conditions, as our numerical results show that, in practice, m need not
be very small for these instabilities to occur in the vicinity of the analysed cases (an
example is given in figure 6a).

Having k 6= 0 and m = 0 (with A � k−1) gives, in an analogous manner, the
applicability condition k∆x � 1, which also does not hold for any of the modes
which turn out to be of interest.

Also, for cases with both wavenumbers being non-zero, the integral conditions are
found not to apply.

5. Numerical solution method
5.1. The eigenvalue problem

Any eigensystem of ordinary differential equations, such as (4.21)–(4.24), can be
approximated with a generalized matrix eigenvalue problem Ax = σBx using, for
example, a Galerkin method, a finite element method or a finite difference method;
here, a finite difference method with variable order of accuracy was developed, and
is presented in § 5.4. Typically, we used it with fourth-order accuracy.

Methods for solving the problem Ax = σBx include inverse iteration methods, the
QZ method, and various methods for solving det(A − σB) directly as a polynomial
equation in σ. We chose the QZ method, which is comparatively slow, but finds all
the eigenvalues without any initial guess. The method is described in Golub & van
Loan (1996), and has been implemented in the lapack Fortran subroutine cgegv.f,
which we have used. On a CRAY-J90 supercomputer, it typically took 1 s of CPU
time to solve the complete eigenvalue problem to desired accuracy.

However, the results we aim for involve solving the eigenvalue problem many
times (in fact, we estimate that all the results contained in this paper required of
the order of 106 solutions), so that even more speed is desired. Rather than trying
faster methods for the matrix eigenvalue problem, we applied the method of shooting
with fourth-order Runge–Kutta integration to trace out most parts of the criticality
curves. The method gives an accurate eigenvalue from an initial guess in about 10−2 s
on the same computer, and also provides a check that the equations have been typed
in correctly. Initial guesses have been taken either from previous points or from the
FD/QZ method. Grid sizes have been automatically doubled to give errors which are
invisible in the plots. Typically, between 40 and 80 grid points was enough, although
it was found to depend on the eigenmode and the parameter region.

In the shooting method, the original equations are first rewritten as a first-order
system. That system is then integrated from the left to the right boundary. To be able
to do this integration, both σ and the values at the left boundary of θ̃, ω̃′y , ṽ′′, and

ṽ′′′, are needed. One of the latter (we chose θ̃) can be fixed, as the amplitude would
otherwise be undetermined. The remaining four values are then solved for, using a
multidimensional Newton method, from the requirement that all the four boundary
conditions at the right boundary be fulfilled.

5.2. Criticality conditions

If we denote the eigenvalue with the largest real part by σr , the criticality conditions
are defined through

max
k,m

σr(Ra, k, m, γ, α, P r) = 0, (5.1)
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which leads to the following system of equations:

σr(Ra, kc, mc, γ, α, P r) = 0,

∂σr

∂k
(Ra, kc, mc, γ, α, P r) = 0, or kc = 0,

∂σr

∂m
(Ra, kc, mc, γ, α, P r) = 0, or mc = 0.

 (5.2)

In solving this, three of the parameters Ra, γ, α, and Pr are held fixed, and the
fourth is varied to fulfil the equations. We chose Ra as the critical parameter, except
on parts of the criticality curves with large values of d(Ra)/dα, where α was solved
for instead. Regarding the above as a system of the type fj(xk) = 0, it can be solved
using a multidimensional Newton method,

0 = f
(i)
j +

∑
k

∂f
(i)
j

∂xk
(x(i+1)
k − x(i)

k ), (5.3)

where the superscript i denotes values at the ith iteration. All the derivatives appearing
in both the functions and the Jacobian are evaluated numerically. Most calculations
were made on a CRAY-J90, and could be parallelized in a simple way: the heavy part
in evaluating the functions and the Jacobian in (5.3) is just a number of independent
evaluations of σr , which are conveniently assigned to different processors. Initial
guesses were obtained from nearby points in the parameter space and the system
iterated until a convergence criterion was satisfied for a few consecutive iterates.
Evaluations of σr over the (k, m)-plane were made at some points to detect the
possible appearance of more unstable branches.

5.3. Some difficulties and their remedies

For cases with extremely thin boundary layers, a special treatment, presented in
Appendix C, was found to be necessary in order to maintain good accuracy for a
reasonable effort.

In some cases (boundary-layer cases when still the whole region was solved for),
the Runge–Kutta integration diverged even from a guess which was good enough to
make the eigenfunctions near y = −1 indistinguishable on a plot. These problematic
cases were solved directly with the QZ method.

Even the QZ method failed to converge in one of the parameter regions. The
problems occurred for modes with k = 0 in cases with boundary layers when the
whole region was solved for. The source of the problem turned out to be a degeneracy
in the system, the two most unstable eigenvalues being almost identical when λ1 = λ2.
With k = 0, all the coefficient functions which remain in the system are symmetric in
y, and all the derivatives of the perturbations are even (symmetry-preserving). If an
arbitrary eigenmode is split into its odd and even parts, use of the symmetries shows
that these parts are uncoupled. Solving the odd and even eigenfunctions separately,
the convergence problems could be eliminated, and the computations carried out
more cheaply (the QZ method requires O(n3) floating point operations, where n is
the order of the matrices, and 2(n/2)3 < n3). Both problems were solved on the
interval [−1, 0]. In order to separate the odd and even modes, the following boundary
conditions were applied at y = 0:

odd modes: ṽ = ṽ′′ = ω̃y = θ̃ = 0;

even modes: ṽ′ = ṽ′′′ = ω̃′y = θ̃′ = 0.

}
(5.4)
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5.4. The finite difference method with variable order of accuracy

The discretization is obtained by including the calculation of the coefficients in the
differencing molecules as part of the code. In deriving a discrete approximation of
order n for a derivative of order d at a grid point yi, we first use Taylor’s formula
to express the known values at the neighbouring points yj in terms of the unknown
derivatives at yi:

φj − φi =

N∑
k=1

∂kφ

∂yk

∣∣∣∣
yi

(yj − yi)k
k!

+ O((yj − yi)N+1). (5.5)

To isolate the dth derivative, the terms with lower derivatives from 1 to d − 1 must
be eliminated, and to obtain nth-order accuracy, the terms with higher derivatives
from d + 1 to d + n − 1 must also be eliminated. This adds up to d + n − 2 terms,
whose elimination requires d + n − 1 equations. Thus, we set N = d + n − 1 in (5.5)
and evaluate it at d+ n− 1 different points yj (as centred as possible around yi). We
obtain

d+n−1∑
k=1

Ajk
∂kφ

∂yk

∣∣∣∣
yi

= (φj − φi) + O((yj − yi)d+n), where Ajk =
(yj − yi)k

k!
. (5.6)

Ajk (whose dependence on i has been suppressed for clarity) can be seen as elements
in a matrix A, which can be inverted to give

∂kφ

∂yk

∣∣∣∣
yi

=
∑
j

(A−1)kj(φj − φi) + O((∆y)d+n−k), (5.7)

where ∆y in the error estimate is a typical grid spacing within the differencing molecule,
and the −k in the exponent comes from the kth column of A being O((∆y)k) – with the
limited aim of investigating how the error scales with the grid spacing it is permissible
to assume k! ∼ O(1). Equation (5.7) shows that the coefficient for φj where j 6= i can
be found in the dth row, jth column of the matrix A−1. The coefficient for φi is then
obtained as minus the sum of the other coefficients. The time taken to calculate all
the needed discretizations by inverting the various small matrices resulting from the
above procedure is, cumbersome as it may seem, actually negligible compared to the
time for solving the matrix eigenvalue problem. The procedure to evaluate derivatives
away from grid points is very similar, and actually even simpler since all the grid
points involved are equivalent for that case.

Finally, the grid must be chosen. That is, for each variable one must determine
both a set of definition points, yj , at which the discrete variable is defined, and a
set of evaluation points, ye, at which the corresponding equation is evaluated. (This
way of looking at it is a generalization of the ideas we have encountered in the
literature.) To keep the differencing molecules symmetric over the whole interval,
and thereby avoid the Runge phenomenon (Dahlquist, Björck & Anderson 1974),
some definition points are placed outside the boundary, the number of such points
for each variable being equal to half the width of the largest differencing molecule
for that variable. With this construction, there are more points outside the domain
than there are boundary conditions to eliminate them; therefore, a number of extra
evaluation points are inserted between definition points near the boundaries, as shown
in figure 3. Boundary-layer cases were treated with grids having a certain fraction
of the total number of grid points uniformly distributed within the boundary layer,
and the remaining points in an expansion factor grid in the interior, whose expansion
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Figure 3. Sample grid for the finite difference method (gives fourth-order accuracy in the ṽ-equation);
© are definition points, where the discrete variable ṽi is defined; × are evaluation points, where the
ṽ-equation is evaluated.
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Figure 4. Accuracy test for the variable-order FD/QZ method.

factor was solved for, using Newton’s method, to make the sum of the cell widths
(a geometric series) equal to the interval to be covered. For cases without boundary
layers, a uniform grid was used.

Some false eigenmodes were seen to arise. Fortunately, those could be sorted away
easily, since they were invariably close to zero in the interior and had large values
outside the domain. The number of such modes increases with the order of accuracy.

As a test case, the free–free Bénard problem (Chandrasekhar 1961, II:15, originally
due to Lord Rayleigh 1916), was solved at the known critical point. The results,
presented in figure 4, indicate that the expected order of accuracy is obtained, up to
a limit determined by machine precision.

6. Results
6.1. Inclined cases, selected Pr

The criticality conditions in the (Ra, α)-plane, for some selected values of Pr, are
presented in figure 5. Colours have been used to code the different Prandtl numbers,
whereas the line style gives some information about the destabilizing mode. The parts
of the criticality curves where Ra is larger than some value in the range 106–108 have
been calculated using the boundary-layer scaling of Appendix C. Results are typically
obtained with at least three significant digits so that errors should be invisible on the
plot. The smooth (invisible) joining of the boundary-layer curves to those without
that assumption indicates that this is indeed the case. The dotted curves have one dot
for each data point, and the density of data points is similar for the other curves.

The Prandtl numbers in the study have been chosen to be characteristic of different
materials. Results are presented for Pr = 0.025 (mercury), Pr = 0.1 (liquid steel),
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Figure 5. Neutral stability curves for the case of equal fluxes and natural stratification
(γ = 45◦, S > 0). The region in the dotted rectangle is studied more closely in figure 9, whereas the
vertical case is presented more fully in figure 10. Destabilizing modes, at the points marked © and
4, are visualized in figures 6 and 7.

Pr = 0.7 (air), Pr = 7 (water), and Pr = 1000 (typical Schmidt number ν/D for ion
diffusion in an electrolyte). The remaining curves Pr = 0.05, 0.075, 0.077, 0.125, and
0.127, which are not completely presented, are there to facilitate interpolation. They
also show how the unstable region on the positive-α side for Pr = 0.025 becomes an
island of instability for Pr = 0.1, which vanishes as Pr is increased beyond 0.127.

Figures 6–8 give a qualitative picture of the different destabilizing modes. In all
those figures, the colour indicates the temperature, with a scale from blue (cold) to
red (hot). The coloured streamlines in figure 6 represent the perturbation field at
t = 0. They have been traced out from the frozen velocity field using Heun’s second-
order method for the time integration and cubic spline interpolation to find the local
velocities. For the time integration, a fourth-order Runge–Kutta scheme was also
tried, but was found to perform less well. A possible cause is the lack of smoothness
in the spline-interpolated velocity field; the issue may be of some general interest for
particle tracking in interpolated velocity fields. The streamfunction which is shown
in figures 7 and 8 is the ordinary streamfunction for two-dimensional incompressible
flow, and was obtained from numerical integration of the u velocities. The arrows on
the streamfunction contours show the direction of the flow. Whereas figures 6 and
7 show only the perturbations, figure 8 also gives an example of a superposition of
base fields and perturbation.

The mode which causes the instability for positive α is perhaps the most peculiar
one. Figure 6(d) may give the impression that the mode transports warm fluid
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Figure 6. Instantaneous streamlines, coloured according to the local temperature, for different
longitudinal (k = 0) modes at the onset of instability. Only the perturbation fields are shown. (a)
Monotonic even mode (the subject of Appendix B): Ra = 2689, Pr = ∞, α = −89.998◦, m = 0.683,
σ = 0. As α → 90◦, m → 0 and Ra → 2568. (b) Oscillatory even mode (standing wave): Ra = 195,
Pr = 0.1, α = −60◦, σ = 1.75i. (c) Monotonic mode with boundary-layer character (a linear
combination of an odd and an even mode, which are equally unstable): Ra = 1.07×106, Pr = 1000,
α = −40◦, m = 10.5, σ = 0. (d) Monotonic even mode for a case with top heating: Ra = 375,
Pr = 0.1, α = 40◦, m = 1.73, σ = 0.

away from the cold wall! However, one must not forget the presence of the strong
stratification, and, taking the inclination of the streamlines into account, one realizes
that the warm fluid in question has its excess heat because it comes from a layer
higher up.

6.2. Comparison with the fixed temperature case

For comparison, we refer to the experimental observations by Hart (1971) for the
constant temperature case, which were found to agree well with the linear stability
analysis in the same work (Hart’s 1971 figure 6, p. 552). Ra in that figure is a Rayleigh
number based on the distance between the plates and the difference in temperature
between them, whereas δ is an inclination angle, equal to −α. The experiments were
made with water (Pr = 6.7). Many features are common to our and Hart’s results.
These include the existence of a region of complete stability near the α → 90◦ limit,
a region of longitudinal (k = 0) instabilities for intermediate, positive, inclination
angles, a region near α = 0 where transverse (m = 0) modes are destabilizing, and a
second longitudinal mode region for negative α. However, for the present case, the
longitudinal instability for positive α does not occur if Pr is as high as 6.7. Also,
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Figure 7. Three different travelling-wave boundary-layer modes, which are destabilizing for different
Pr in the vertical case. The plots show streamfunction and temperature perturbations near the cooled
wall. The (a) and (b) modes travel downwards, with the base flow, whereas the (c) mode travels in
the opposite direction. Boundary-layer scaling is used, as described in Appendix C.
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Figure 8. A detailed study of a transverse travelling wave. Ra = 4.4 × 105, Pr = 0.1, α = 0,
k = 6.5, σ = 150i. (a) Base-solution streamfunction, Ψ , and temperature, Θ. (b) Perturbations ψ̂

and θ̂ at t = 0. The whole pattern moves downwards at constant speed. (c) Total ψ and θ at t = 0.
The perturbation amplitude is (has been arbitrarily chosen to be) about 30% in cross-sectional
temperature variation. (d) Particle paths during two periods, starting from the flow in (c).
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Figure 9. Neutral stability curves for four different modes near the bottom-heated limit. (a)
Oscillatory even longitudinal mode (standing wave). (b) Transverse travelling wave. (c) Monotonic
odd longitudinal mode (roll). (d) Monotonic even longitudinal mode (roll).

the stability regions in our case are generally much larger than in Hart’s case. This
matter is further discussed in § 6.4 on the vertical case.

6.3. Close-up of the region −90◦ < α < −60◦

For these bottom-heated cases, we have found four different modes to be destabilizing,
each for a different range of Pr and α. Figure 9(a–d) shows, in separate plots, the
criticality conditions for these four modes. The individual modes are as follows:

(a) This mode has k = 0, m 6= 0, is even in y, and gives an oscillatory instability.
It is destabilizing in a large-α region for Pr smaller than about 1. As Pr is increased
beyond 1, the mode is strongly stabilized, and becomes completely stable for Pr larger
than about 1.4. The criticality curves have an upper branch at which an increase in
Ra is stabilizing, but, since there are other modes which are unstable on that branch,
this should have no practical implications. The mode was not encountered in the
case studied by Hart (1971). Figure 6(b) shows an instantaneous picture of counter-
rotating, strongly inclined, rolls. Half a period later, both temperature and velocity
perturbations become reversed.

(b) This mode has k 6= 0, m = 0, and gives an oscillatory instability. As the enclosure
is raised from the horizontal, the critical Ra of this mode does not increase as fast
as for the other modes, meaning that this mode eventually becomes destabilizing.
However, near α = −90◦, the (a) mode tends to be more unstable if Pr is small,
whereas the (c) and (d) modes dominate if Pr is large, although there is a region,
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Figure 10. Neutral stability curves for the vertical case. The boundary-layer treatment has been
used, except for on the thick part of the leftmost curve. Consequently (see Appendix C), the
stratification parameter, S , is chosen as the critical parameter. The three different destabilizing
modes are studied in figure 7.

near Pr = 1, where the (b) mode is destabilizing for all α. The same mode, but for a
vertical case in the boundary-layer limit, is visualized in figure 7(b).

(c) This mode has k = 0, m 6= 0, is odd in y, and gives a monotonic instability.
It is important near the horizontal case, if Pr is larger than one. However, for very
large Pr, and α very close to −90◦, its even counterpart, the (d) mode, becomes even
more unstable. As the enclosure is raised from the horizontal, one reaches a region in
which the base solution has boundary layers. In this region, the growth rates for the
(c) and (d) modes are indistinguishable; the boundary-layer mode which is visualized
in figure 6(c) can be thought of as a linear combination of the two. The figure shows
inclined, counter-rotating rolls, which are elongated in the x-direction.

(d) This mode has k = 0, m 6= 0, is even in y, and gives a monotonic instability.
It is destabilizing only for very large Pr and α less than about −88◦. For α close
to −90◦, the critical values of Ra and m depend very sensitively on α. At the single
point of infinite Pr and α = −90◦, the numerical solution for Rac and mc fails to
converge. Results for finite values of Pr seem to suggest that mc approaches zero as
Pr → ∞, which would explain the problem (since we solve for the logarithm of mc).
To find out what goes on in the limit, some analysis has been done, and is presented
in Appendix B. The analysis shows that for α = −90◦ and Pr →∞, the critical point
is mc → 0, Rac → 2568. This value has been marked with an asterisk in figure 9(d).
The perturbation itself is seen in figure 6(a) to be of a simple roll nature, where the
rolls become wider as the limit is approached.

6.4. The vertical case

Three different modes, all with k 6= 0, m = 0, and Im(σ) 6= 0, are destabilizing in the
vertical case, each for a different Prandtl number range. Their stability boundaries
are given in figure 10, and the perturbations are visualized in figure 7(a–c). Except
for cases with Pr � 1, there are boundary layers at criticality, which motivates the
use of the scaling in Appendix C. With that scaling, S , but not Ra, appears explicitly
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in the perturbation equations, and becomes a logical choice as a criticality parameter.
As can be seen in figure 10, a larger stratification favours stability.

The corresponding critical Rayleigh numbers (at steady state) are extremely large,
up to O(1021) for large values of Pr. Expecting such cases to be turbulent, one is led to
consider the limitations of the theory. It may be fair to say that when extrapolating an
analysis for infinitesimal disturbances to a reality with finite disturbances, the separation
line between the stable and unstable regions becomes one between a possibly stable region
and one which is definitely unstable. That this distinction is important is most clearly
seen in a plane Couette flow, which is linearly stable for all Reynolds numbers, but
in reality cannot be maintained for large Reynolds numbers, due to transient growth
of finite disturbances (Lundbladh & Johansson 1991).

It may still be that even the large-Pr part of figure 10 has some relevance. In
transient cases, Bark, Alavyoon & Dahlkild (1992) found the approach to steady
state to be such that the boundary layers adjust, almost instantaneously, to a slowly
developing stratification. As the time scale for boundary-layer adjustment, β−2, is
the same as that for boundary-layer instabilities, there are no further assumptions
involved in applying the critical S from figure 10 to transient situations. In doing so,
S may be set equal to a value outside the boundary layer of −∇θ · eg , which generally
varies with x. The x-location at which instabilities are most likely to occur is that with
the smallest value of S . One may expect situations when instabilities of the predicted
type exist in the less stratified regions, and are damped out elsewhere.

To enable comparison with a well-established result (Gill & Davey 1969; Bergholz
1978), the boundary condition on the temperature fluctuation at the wall was tem-
porarily changed to T̃ = 0. For Pr = 10, critical S was found to be 1.664 × 10−2.
This is to be compared with

√
2/(R̂cP r), where R̂c in the notation of Bergholz (1978)

is the critical value of a Reynolds number for the boundary layer, found to be
8.50 for Pr = 10, so that we should have Sc =

√
2/85.0 = 1.66(38) × 10−2, which

indeed was obtained. This result, together with the agreement between the numerical
results and the analytical ones of Appendices A and B, the agreement between the
FD/QZ and RK methods, the qualitative similarities with the constant temperature
case (Hart 1971), and a check of the perturbation equations versus those of Hart
(1971), constitute the verification.

Changing the boundary condition back to T̃ ′(0) = 0, one obtains Sc = 2.062× 10−2

(slightly more unstable). We conclude that it is not the different boundary condition
on the perturbation which makes the constant flux case much more stable than the
constant temperature case. Instead, the reason must be found in the base solution,
where the only difference is that the constant flux case has a much larger stratification.
This in turn reduces both the amplitude and the boundary-layer thickness of both
the velocity and temperature profiles, which explains the strong tendency for stability.

For completeness, let us briefly discuss some modes which are not destabilizing. In
Bergholz (1978), where the stratification was varied as a free parameter, monotonically
growing transverse rolls with their axis in the z-direction, extending over the whole
interval y ∈ [−1, 1], were found to be destabilizing in some parameter regions. In
our case, with the stratification determined as part of the base solution, such rolls
were found too – but only among the damped eigenmodes. A work by Le Quéré
& Pécheux (1989) may deepen our understanding. They studied an air-filled gap
between two concentric vertical cylinders with fixed temperatures. For low Ra they
found a conduction-dominated solution. Increasing Ra they observed a first transition
to rolls, a second more gradual one to unicellular boundary-layer flow, and a third to
a state with travelling waves. In the second transition, the rolls disappeared one by
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one as the stratification increased. In the present case, it seems that the stratification
becomes important at an Ra which is too low to give the roll instability a chance to
set in. Modes which one may classify as internal waves were also found among the
damped eigenmodes. This appears to be the case also when the wall temperatures are
prescribed, but is evidently not true for transient flows, in which they are known to
appear (Patterson & Imberger 1980; Le Quéré & Pécheux 1989).

7. Concluding remarks
For the case of equal fluxes, it has been shown in which regions of the (Ra, α, P r)

parameter space the unicellular base solution from Sundström & Kimura (1996) is
stable to infinitesimal perturbations. Figure 5 summarizes the results. The uniform
flux case is found to be much more stable than that of Hart (1971) with fixed wall
temperatures, a fact which is attributed to the much larger stratification which occurs
in the base solution. As could be expected, instabilities tend to be favoured by a
decrease in Pr, an increase in Ra, and a decrease in α; however, exceptions to all
these rules could be found.

Cases in which the wavenumber is zero, or approaches zero in different ways, are
studied analytically. Integral conditions, derived from the unresolved end regions, are
applied in the analysis. The results show that all the base solutions with unnatural
(top heavy) stratification are unstable to large-wavelength stationary rolls whose axes
are parallel with the base flow.

We conclude by suggesting some further developments.
Variation of γ. In many electrochemical systems, the mass fluxes of ions at the two

walls are not equal, so that one would need to use different values of the parameter γ.
End region boundary layers. It would be of some interest to investigate the stability

of the boundary layers on the endwalls at x = ±A, at least those for positive α, for
which a simple analytical solution is given in SK.

The eigensystem. A closer investigation would be needed to verify, or falsify, our
numerical indications that the destabilizing modes must be either longitudinal or
transverse, as well as our assumption that the eigenfunctions obtained constitute a
complete basis in which any physically possible initial condition can be expanded.

Morphological instabilities. These are instabilities in surface shape, which may be
regarded as the initial stages of dendrite formation. This is known to occur both
during the solidification of a melt (Davis 1990), and in electrochemical metal refining
(Sundström & Bark 1995).

Algebraic growth. Studies on such phenomena are a useful, if not necessary,
complement to any stability analysis in which the eigenmodes are non-orthogonal,
which is the case here. Because of cancellation in the eigenmode expansion of the
initial conditions, even a sum of decaying eigenmodes can grow initially, and may
even reach the nonlinear region, in which case the linear solution breaks down and
its predicted decay for large times never occurs. Some theory and further references
are given in Reddy & Henningson (1993).

Energy stability. To determine a parameter region in which the base solution is
definitely stable, one can find the criteria for no initial growth of any perturbation,
often referred to as energy stability criteria (Joseph 1976, chap. VIII, 56, 57).

Finite aspect ratios. To investigate the effect of finite aspect ratios, one would
presumably need to do some experimental work, or numerical simulations of unsteady
three-dimensional cases. Such work may also clarify to what extent our construction
of real-valued perturbations agrees with what is actually observed.
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Secondary instabilities. Naturally, even the flow that arises beyond the stability
boundary may lose its stability. The complexity of the secondary stability problem
depends entirely on the structure of the new base solution, which will be different
for different modes. In general, a fast and accurate three-dimensional numerical code
would be needed. Although very little has been done in this regard, papers by Chait &
Korpela (1989) and Wang & Korpela (1992) have studied the secondary instabilities
that arise in problems closely related to the one presented here; in particular, they
find that secondary instabilities set in rather close to the primary instability boundary
via the mechanism of subharmonic resonance, a feature that is typical of inflectional
velocity profiles. Also of significance here are the computations of Le Quéré &
Pécheux (1989) and Le Quéré (1990a,b), which use spectral methods and are thus
the most reliable of those that address the boundary-layer regime; structures are
found that are similar those in the present paper, as well as indications as to how
the instability propagates through the end regions, a feature that a linear stability
analysis in an infinite domain cannot address.

The numerical method. It would be of interest to test the variable-order finite
difference method developed here, primarily against the Galerkin method, using
either Chebyshev polynomials or some problem-dependent basis functions. Having
made all the improvements we could think of, we believe that the method is already
close to optimal as compared to other finite difference approaches, and possibly finite
element approaches as well, as those tend to give similar discrete equations. However,
it would be necessary to run extensive tests to verify, or falsify, this belief.
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Appendix A. The cases k = m = 0, k → 0, m = 0, and k = 0, m→ 0

When k = m = 0, the original ansatz for the pressure perturbation can be general-
ized somewhat to

p̂ = (p̃(y) + ax+ cz)eσt, (A 1)

where a and c are constants (if only one of the wavenumbers is zero, no similar
generalization can be made).

Consider the system of equations (4.13)–(4.17). The continuity equation (4.16),
unaffected by the change in the pressure ansatz, gives ṽ′ = 0 which, together with the
boundary conditions for ṽ, gives ṽ(y) ≡ 0. The remaining equations become, with the
new pressure,

σ

Pr
ũ− ũ′′ + a− θ̃ cos α = 0, (A 2)

σ

Pr
w̃ − w̃′′ + c = 0, (A 3)

σθ̃ − θ̃′′ + RaũSx = 0, (A 4)
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with the boundary conditions

ũ(±1) = w̃(±1) = θ̃′(±1) = 0. (A 5a–f)

Since all the coefficients are symmetric in y (in fact, independent of y) and there are
only even derivatives of the perturbations, there will be one even and one odd family
of solutions.

For this case, there is, except for an arbitrariness in time shift and amplitude, only

one way to construct real-valued solutions, namely φ̂ = Re{φ̃ exp (σt)}.
Requiring the integral condition (4.10) to hold for any x0 and z0 gives the two

conditions ∫ 1

−1

ũdy = 0,

∫ 1

−1

w̃ dy = 0. (A 6a, b)

From (4.11) one obtains, with the aid of (A 6a) and (A 4)∫ 1

−1

(ũΘ +Uθ̃) dy = 0,

∫ 1

−1

w̃Θ dy = 0. (A 7a, b)

As both Θ and U are odd in y, any even perturbation fulfils (A 7a) and (A 7b) and
leaves a and c to be determined by (A 6a) and (A 6b). Odd solutions give a = c = 0,
fulfil (A 6) but violate (A 7), and are therefore not of interest.

For any parameter values, one solution is given by θ̃ = θ̃0 (constant), a = θ̃0 cos α,
and ũ = w̃ = c = σ = 0. This is just a simple translation in bulk temperature, so it is
not surprising that the mode is neutrally stable for all Ra. However, as is shown in
Appendix B, some less trivial results can be obtained by considering perturbations of
this mode for small but non-zero wavenumbers.

Let us continue by using the differential equations to eliminate the cases which can
only give rise to decaying modes. Multiplying (A 3) with w̃∗ and integrating over y, it
is shown, in analogy with (4.25), that any mode with a non-zero w̃ must be decaying.
Corresponding manipulations on the remaining equations give

σ

Pr
||ũ||2 = −||ũ′||2 + (θ̃, ũ) cos α, (A 8)

σ||θ̃||2 = −||θ̃′||2 − (ũ, θ̃)RaSx, (A 9)

where (a, b) =
∫ 1

−1
ab∗ dy defines a scalar product, and ||a|| = (a, a)1/2 is the corre-

sponding Hilbert norm.
For the special case of a horizontal enclosure, cos α = 0. Equation (A 8) then gives

that σ < 0, or ũ(y) ≡ 0. Assuming the latter, (A 9) gives that σ < 0 or θ̃′(y) ≡ 0.
The latter alternative gives the already known solution with a constant θ̃, for which
σ = 0. Thus, there can be no instabilities with k = m = 0 for a horizontal enclosure.

Having treated the case cos α = 0, we henceforth assume cos α 6= 0, and replace Sx
by S cos α. The linear combination RaS (A 8)+(A 9)∗ gives

σ
RaS

Pr
||ũ||2 + σ∗||θ̃||2 = −RaS ||ũ′||2 − ||θ̃′||2. (A 10)

The real part of this expression shows that if the stratification is natural (S > 0) there
can only be decaying solutions. We therefore concentrate on cases with unnatural
stratification (S < 0). Taking the imaginary part of (A 10), one has

Im (σ)

(
RaS

Pr
||ũ||2 − ||θ̃||2

)
= 0, (A 11)

which shows that σ is real whenever S < 0.
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At this point, the even solutions for ũ and θ̃ must be found, assuming S < 0. With
B = (−RaS cos2 α)1/4, one obtains

ũ

cos α
= A

cosh(Bµy)

cosh(Bµ)
+ C

cos(Bη y)

cos(Bη)
− (A+ C), (A 12)

θ̃

B2
= −A+ C

s
√
Pr

+ A

(
s√
Pr
− µ2

)
cosh(Bµy)

cosh(Bµ)
+ C

(
s√
Pr

+ η2

)
cos(Bη y)

cos(Bη)
, (A 13)

where

s =
σ√
PrB2

, A =
tan(Bη)

Bη
− 1, C = 1− tanh(Bµ)

Bµ
, (A 14)

η =

√√√√− s
2

(√
Pr +

1√
Pr

)
+

√
1 +

s2

4

(√
Pr − 1√

Pr

)2

, (A 15)

µ =

√√√√ s

2

(√
Pr +

1√
Pr

)
+

√
1 +

s2

4

(√
Pr − 1√

Pr

)2

. (A 16)

In deriving the above, all the equations and all the conditions on ũ have been used.
Finally, the condition θ̃′(1) = 0 is applied to give the following relation, from which s
can be solved for:

µA

(
s√
Pr
− µ2

)
tanh(Bµ)− Cη

(
s√
Pr

+ η2

)
tan(Bη) = 0. (A 17)

One finds that criticality is given by tanB = tanhB, whose solutions are

B ≈ 0, 3.927 + (n− 1)π, n = 1, 2, . . . (A 18)

In the first interval, 0 < B < 3.927, there are no solutions with s > 0. In the second
interval, there is one unstable mode – each time a new critical value is passed, one
more mode becomes unstable. In conclusion, the condition for modes with k = m = 0
to be unstable is that

S < 0 and B ≡ (−RaS cos2 α)1/4 > 3.927. (A 19)

However, the zero wavenumber case is quite special because of the sudden appear-
ance of integral conditions. For cases in which at least one of the wavenumbers is
non-zero, no integral conditions are explicitly applied.

With k → 0 and m = 0, w̃ ≡ 0 for any mode which may grow. Scaling so that
θ̃ ∼ O(1) makes ṽ ∼ O(k), and ũ ∼ O(1), so that ṽ → 0 in the limit. ũ is guaranteed
from the continuity equation (4.16) to fulfil (A 6a), whereas (A 7a) is not generally
satisfied. In the limit, one obtains the k = m = 0 case with only the condition (A 6a).

With k = 0 and m → 0, one may again scale θ̃ to be O(1); then ṽ ∼ O(m2),
w̃ ∼ O(m), and ũ ∼ O(1), so that only ũ and θ̃ remain as m → 0. However, for this
case (A 6a) is generally not satisfied – instead (A 6b) is. In the limit, one has the
k = m = 0 case with only the condition (A 6b). With the same definitions of s, η, and
µ, the solution for the even modes now becomes

ũ

cos α
=

cosh (Bµy)

cosh (Bµ)
− cos (Bη y)

cos (Bη)
, (A 20)
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θ̃

B2
=

(
s√
Pr
− µ2

)
cosh (Bµy)

cosh (Bµ)
−
(

s√
Pr

+ η2

)
cos (Bη y)

cos (Bη)
, (A 21)

with s to be determined from

µ

(
s√
Pr
− µ2

)
tanh (Bµ) + η

(
s√
Pr

+ η2

)
tan (Bη) = 0. (A 22)

This too gives the criticality conditions tanB = tanhB, but here there is an unstable
mode even in the first interval. The case has been investigated previously by Lavine
(1993), who did a stability analysis for zero wavenumbers of an arbitrary base solution
of the form u = U(y)ex, θ = Ax+Bz+F(y), between two plates with prescribed fluxes,
and found an even mode to be destabilizing for all cases with top-heavy (unnatural)
stratification. Integral conditions were not discussed in that work, so it was believed
in SK that the results were not applicable. We have shown here, however, that even
though Lavine’s results are not strictly applicable for zero wavenumbers in the present
case, they do describe the limit k = 0, m→ 0 correctly.

In numerical simulations with m = 0, and k small, we found instabilities for
B > 2.365 (due to an odd mode), and for B > 3.927 for the first even mode. For k = 0
and m small, an even mode was found to be unstable for all B > 0. These findings
all agree with the above analysis. Since the extent of the enclosure puts a limit on
how small the smallest non-zero m may be, it may still be possible that solutions with
unnatural stratifications can be stable in a box which is not too wide in z. Typically,
however, the numerical results predict instability for m values as large as about one.
Boxes such that mmin is less than O(1) are possibly too thin for the base solution from
SK to apply.

Appendix B. The horizontal, bottom-heated case with k = 0, m� 1

The following analysis has been made both manually and with use of computer
algebra (Maple V, Char et al. 1991). A similar analysis of the corresponding problem
in a porous medium can be found in Kimura, Vynnycky & Alavyoon (1995).

To be able to apply directly the base solution from SK, we specify the case as
γ = 225◦, α = 90◦ rather than the equivalent γ = 45◦, α = −90◦, and obtain

Θ = Sxx− y√
2

+
RaS 2

x

4!

(
y5

5
− 2

3
y3 + y

)
︸ ︷︷ ︸

g(y)

, (B 1)

U =
Sx

6

(
y3 − y) , (B 2)

Sx =
3

2Ra

√
14(R − 45), (B 3)

R = Ra/
√

2. (B 4)

With k = 0 and α = 90◦, the perturbation equations read

σ

Pr

(
m2ṽ − ṽ′′) = −ṽ′′′′ + 2m2ṽ′′ − m4ṽ + m2θ̃, (B 5)

σ

Pr
ũ = ũ′′ − m2ũ− Ra

Pr
U ′ṽ, (B 6)

σθ̃ = θ̃′′ − m2θ̃ − Rag′ṽ − RaSxũ, (B 7)
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with the boundary conditions

(ṽ, ṽ′, ũ, θ̃′) = 0 at y = ±1. (B 8)

The third velocity component w̃ is not zero but equal to iṽ′/m. In fact, ŵ is typically
much larger than û for the investigated mode – see figure 6(a).

Each of the eigenmodes can be expanded in a Taylor series around m2 = 0:
σ
ṽ
ũ

θ̃

 =


σ0

ṽ0

ũ0

θ̃0

+ m2


σ2

ṽ2

ũ2

θ̃2

+ m4


σ4

ṽ4

ũ4

θ̃4

+ O(m6). (B 9)

We wish to investigate cases in which the critical wavenumber goes to zero. A mode
for which mc → 0 must have Re{σ0} = 0. From the study of the k = m = 0 case, we

have seen that the only mode which fulfils this criterion is the one with θ̃0 constant
and (σ0, ṽ0, ũ0) = 0. As this mode has Re{σ0} = 0 for all Ra, one must to go to higher
orders to determine stability. At O(m2), the equations are

ṽ′′′′2 = θ̃0, (B 10)

ũ′′2 =
Ra

Pr
U ′ṽ2, (B 11)

θ̃
′′
2 = (1 + σ2) θ̃0 + Rag′ṽ2 + RaSxũ2, (B 12)

with boundary conditions which follow from (B 8).
Solving (B 10) gives

ṽ2(y)/θ̃0 =
1

4!

(
y4 − 2y2 + 1

)
, (B 13)

which, for (B 11), then gives

ũ′′2/θ̃0 =
RaSx

6Pr4!
(3y2 − 1)(y4 − 2y2 + 1) =

RaSx

6Pr4!
(3y6 − 7y4 + 5y2 − 1). (B 14)

Integrating twice and applying the boundary conditions, one obtains

ũ2(y)/θ̃0 =
RaSx

6Pr4!

(
3(y8 − 1)

8 · 7 − 7(y6 − 1)

6 · 5 +
5(y4 − 1)

4 · 3 − 1(y2 − 1)

2 · 1
)
. (B 15)

Equation (B 12) can now be integrated once to give

θ̃′2
θ̃0

= (1 + σ2)y +
21(R − 45)

16 · 6Pr
(

3(y9 − 9y)

917
− 7(y7 − 7y)

715
+

5(y5 − 5y)

513
− y3 − 3y

311

)

+
1

4!

{
21(R − 45)

16

(
y9

9
− 4y7

7
+

6y5

5
− 4y3

3
+ y

)
− R

(
y5

5
− 2y3

3
+ y

)}
, (B 16)

where nkm denotes the product of the numbers from n to m with a step of k; this
type of slightly innovative notation becomes useful as the complexity increases. The
integration constant has been determined to zero, since θ̃′2(1) + θ̃

′
2(−1) = 0. From also

requiring θ̃′2(−1) = 0, one has the surprisingly simple result

σ2 = −R − 45

30Pr
. (B 17)

Since R must be larger than 45 for the convective base solution to be valid, the above
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result means that, for every finite value of Pr, stability prevails for small enough m.
Since real Prandtl numbers are always finite, one may be tempted to stop at this
point. However, suppose that there are Rayleigh numbers such that σ4(R, P r) has a
positive value which does not vanish as Pr → ∞. For such a Rayleigh number, with
sufficiently high Pr, and a small m, the fourth-order term would dominate and cause
an instability. We therefore continue the analysis one step further. Let us however do
this only for the case Pr →∞. Then, from integrating (B 16),

θ̃2

θ̃0

=
y2

2
+

21(R − 45)

16 · 4!

(
y10

10 · 9 −
4y8

8 · 7 +
6y6

6 · 5 −
4y4

4 · 3 +
y2

2 · 1
)

−R
4!

(
y6

6 · 5 −
2y4

4 · 3 +
y2

2 · 1
)

+ C, (B 18)

where C is a constant, which may be determined from a normalization condition.
However, as such a condition should not affect σ, let us keep C undetermined. At
O(m4), the equations are

ṽ′′′′4 = 2ṽ′′2 + θ̃2, (B 19)

ũ′′4 = ũ2 = 0, (B 20)

θ̃
′′
4 = σ4θ̃0 + θ̃2 + Rag′ṽ4 + RaSxũ4. (B 21)

From (B 20), we obtain ũ4 = 0. In (B 19), 2ṽ′′2 = y2 − 1/3 from (B 13), and one has,
after integrating four times and applying the boundary conditions,

ṽ4

θ̃0

=

(
P6 − P4

3

)
+
P6

2
+

21(R − 45)

16 · 4!

(
P14

10 · 9 −
4P12

8 · 7 +
6P10

6 · 5 −
4P8

4 · 3 +
P6

2 · 1
)

−R
4!

(
P10

6 · 5 −
2P8

4 · 3 +
P6

2 · 1
)

+ CP4, (B 22)

where

Pn =
yn − (n/2)y2 + n/2− 1

n1(n− 3)
, (B 23)

so that Pn(±1) = 0, P ′n(±1) = 0, and P ′′′′n = yn−4 for n > 4.
σ4 can now be found by integrating (B 21) from −1 to 1, and using the boundary

conditions for θ̃4. One obtains, after a considerable amount of trivial calculation,

σ4 = − 30926

230945
− 671R

2204475
+

409R2

1964187225
, (B 24)

an expression which is negative for small R, and positive for large R, so that a critical
Rayleigh number results from solving σ4 = 0, namely

Rc =
597861 + 153

√
33651489

818
≈ 1816, (B 25)

which gives Rac =
√

2Rc ≈ 2568. As can be seen from figure 9(d), this is a plausible
limit for the numerical data to approach. Furthermore, both the expressions (B 24)
and (B 17) were found to compare favourably with numerical calculations of σ.

Finally, let us devote a few lines to investigate whether or not the same type
of analysis can be used to find the critical Rayleigh number for the first bifur-
cation (from a conductive to a convective solution). The reason why we expect
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this to be possible is that the convective solution is in the form of a single
cell. Although one would rather think of the convective solution as a result of
an instability with m = 0, k → 0, than one with k = 0, m → 0, the two lim-
its are equivalent for this case. The conductive base solution is θ = y/

√
2, u =

0, Sx = 0. Again, it is only the zeroth-order solution with zero velocities and θ̃0

constant which need be considered. Furthermore, ṽ2 becomes the same as above.
Integrating (B 12) from −1 to 1 and applying the boundary conditions on θ̃2

gives

σ2 = −1 +
R

45
, (B 26)

so that Rc = 45, in agreement both with the numerical stability analysis of Sparrow
et al. (1963), and with the existence condition for the bifurcated solution from
SK.

Appendix C. Perturbation equations in the boundary-layer limit
For large values of β = (RaS cos2 α/4)1/4, U has a boundary layer of thickness

O(β−1), and amplitude O(β−3 cos α); the boundary layer for Θ is of equal thickness,
but with the different amplitude O(β−1). To avoid numerical difficulties, the following
rescaled variables were introduced:

Ub = β3U/ cos α, fb = βf, Ṽ = β3ṽ, Ω̃y = β2ω̃y, T̃ = βθ̃, (C 1a–e)

Y = β(1 + y), σb = σ/β2, K = k/β, M = m/β. (C 1f –i )

With this scaling, one has

Ub = −1

2

(
λ1 + λ2

2
− S sin α

)
e−Y sinY

+
λ2 − λ1

8β

{
(2β − 1) e−Y sinY − 1 + e−Y cosY

}
+ O(e−2β), (C 2a)

fb = −
(
λ1 + λ2

2
− S sin α

)
e−Y cosY

+
λ2 − λ1

4

{(
2− 1

β

)
e−Y cosY +

1

β2
− 1

β
− e−Y sinY

β

}
+ O(e−2β). (C 2b)

The new variables obey the following equations:

σb

P r

(
QṼ − Ṽ ′′) = −Ṽ ′′′′ + (2Q+ AKUb) Ṽ

′′ − AKU ′′b Ṽ − Q (Q+ AKUb) Ṽ

+iKT̃ ′ cos α+ QT̃ sin α, (C 3a)

σb

P r
Ω̃y = Ω̃′′y − (Q+ AKUb) Ω̃y − AMU ′bṼ + iMT̃ cos α, (C 3b)

σbT̃ = T̃ ′′−
(
Q+

4iKUb

S cos α

)
T̃− 4iKṼ ′

Q cos α
+

4iMΩ̃y

Q cos α
−(f′b + S sin α

) 4Ṽ

S cos2 α
, (C 3c)

where

Q = K2 +M2, A =
4i

PrS cos α
, ′ =

d

dY
. (C 4a–c)
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The boundary conditions at Y = 0 are

Ṽ = Ṽ ′ = Ω̃y = T̃ ′ = 0. (C 5a–d)

At the right-hand end of the region solved for, which is here a point in the interior,
the boundary conditions are not immediately given, and different treatments can
be thought of. As the perturbations were seen to decay exponentially to zero in the
interior, we chose a simple treatment, and applied the boundary conditions (C 5) at the
right-hand boundary as well. The position of the right-hand boundary was adjusted
to make the errors due to the arbitrarily chosen boundary conditions negligible.
Typically, it was enough to put the boundary at Y = 30. For a test case, it was also
checked that a change in one of the boundary conditions from T̃ ′ = 0 to T̃ = 0 had
no effect on the modes of interest. There are also false modes, which have their main
variation near the right-hand boundary, but these were all found to be stable, and
were therefore sorted away automatically.
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